Why aren’t more girls choosing careers in science and engineering?

Why aren’t more girls choosing careers in science and engineering?

It’s no secret that women are under-represented in the offices of most tech companies and laboratories today. Although more women than men complete tertiary education across high-income countries, they account for just 25 percent of graduates in information and communications technology, and 24 percent in engineering. Less clear, however, are the reasons behind this gender gap.

Some studies have pointed to discrimination or the absence of affordable childcare, while others have highlighted the importance of professional networks and personal preferences. Now, new research has shed light on another factor that may be at work: girls’ confidence in science, and their relative strength in other subjects.

The latest issue of PISA in Focus takes a closer look at this research, which was published last year by Gijsbert Stoet and David Geary. Their paper analyses PISA 2015 data to explore the nature of the gender gap in science, technology, engineering and mathematics (STEM) fields. Girls outperformed boys in science in 19 of the 67 countries and economies that participated in PISA, the paper notes, while boys outperformed girls in 22. (Gender differences were not statistically significant in the remaining 26 countries.)

The authors then analysed gender gaps by looking at each student’s “relative performance” (or “strength”) across the three subjects: reading, mathematics and science.  In nearly all countries, they found that boys scored higher in science and mathematics compared to their average across all subjects, while girls scored higher in reading. These differences could explain why boys are more likely to choose careers in STEM fields, even though both girls and boys perform at similar levels: students may choose their field of study based on their comparative strengths, rather than on their absolute strengths. Girls may be as competent in science as boys, but they are likely to be even better in reading.

Students’ career choices may be influenced by their understanding of their relative academic strengths, as well as their confidence and interest in science.

The findings also show that in 2015, boys’ self-efficacy in science (a measure of confidence when dealing with science topics) was higher than girls’ in 39 out of the 67 countries and economies. Similarly, boys expressed a stronger interest in general science-related topics in 51 countries and economies. These cross-gender differences in relative academic strength, self-efficacy, and interest in science account for a large proportion of the deficit in women’s STEM graduation rates.

The authors used different PISA-based criteria to calculate the share of girls whom one could expect to complete a university STEM degree. Among all students, the share of  girls who attained PISA proficiency Level 4 in all three domains (49%)  was far higher than the share of women who graduated with a university STEM degree between 2012 and 2015 (28%). When the authors further restricted the field of potential STEM graduates to high performers who expressed strong enjoyment, interest and self-efficacy in science, girls accounted for 41% of the pool.

Notably, the difference between expected and actual proportions of women among STEM graduates shrank significantly when the authors further restricted their student pool to those who were relatively stronger in science and mathematics, rather than reading. Using this definition, only one in three girls (34%) was expected to complete a STEM degree. In most countries, however, the percentage of women graduating in a STEM field was still smaller than expected.

The study suggests that students’ career choices may be influenced by their understanding of their relative academic strengths, as well as their confidence and interest in science. Unlike high-performing boys, high-performing girls may not pursue a career in science simply because they are likely to be at or near the top of the class in non-science subjects, too. For policy makers working toward greater gender parity in STEM fields, this implies that  tackling boys’ underperformance in reading may be just as important as supporting girls’ attitudes towards STEM subjects.

Read more: 

 

The science of teaching science: An exploration of science teaching practices in PISA 2015

OECD Education Working Papers No. 188

With Alfonso Echazarra and Hélène Guillou

This paper explores the relationship between various science teaching strategies and students’ science-related outcomes. The focus is on enquiry-based science teaching, teacher-directed instruction, adaptive teaching and teacher feedback. The outcomes of interest include students’ science performance, and students’ dispositions and attitudes towards science. The findings show that the negative association between enquiry-based science teaching and science performance is greatly attenuated when lessons are delivered in disciplined science classes. This approach could help close the gender gap between girls and boys when it comes to attitudes towards science and to the decision to pursue a career in STEM-related fields. The results also show that teacher-directed instruction is a reliable strategy that is positively associated with students’ science outcomes regardless of school climate and resources. Adaptive teaching is positively correlated with science performance in the majority of countries, particularly in countries known for the use of personalised learning approaches, while teacher feedback is weakly but positively associated with science performance once students’ achievement in mathematics and reading is accounted for. In general, all teaching strategies have the potential to foster enjoyment of and interest in science, and students’ epistemic beliefs, self-efficacy in science and expectations of a career in science.

Link to paper in PDF

http://dx.doi.org/10.1787/f5bd9e57-en

 

The Science of Teaching Science: Evidence from PISA 2015

The Science of Teaching Science: Evidence from PISA 2015

Education experts have spent the last 50 years debating over a seemingly simple question: what’s the best way to teach science? On one side of the divide are those who support self-guided, enquiry-based approaches, under which students direct their own learning. On the other are proponents of teacher-directed instruction, who say this approach makes it easier for teachers to manage classrooms and cover a wider range of content. Complicating the debate even further is the increasing diversity of student populations, which has raised demands for science curricula to adapt to student needs through adaptive teaching approaches.

We take a closer look at each of these strategies in the latest issue of PISA in Focus. Using new evidence from PISA 2015, we found that each approach has advantages and drawbacks for learning – and that identifying the most effective strategy isn’t as clear cut a proposition as it may seem.

In almost all of the 68 countries and economies that participated in PISA, students in the least disciplined science classes perform worse when exposed to enquiry-based science teaching. But in 33 countries and economies, this negative association disappears when students are learning in a disciplined environment.

In Thailand, exposure to enquiry-based teaching accounted for a four-point increase in performance among students in the most disciplined science classes. But students exposed to enquiry-based teaching in the least disciplined classrooms, scored about 13 points lower than those in more disciplined environments. The benefits gained from attending disciplined science classes with enquiry-based teaching are largest in Georgia (+20 points), Kosovo (+15 points), Lebanon (+13 points), Malta (+14 points), and Slovenia (+13 points).

Our findings shed light on the real-world complexity of teaching.

In OECD countries, enquiry-based teaching seems like the most promising way to nurture positive attitudes toward science – including interest and enjoyment in science-related topics, and participation in science-related activities. We also found that all three teaching practices – enquiry-based, teacher-directed and adaptive teaching are associated with higher expectations among students to pursue a career in science. This association is particularly strong among girls who are exposed to enquiry-based teaching.

Teacher-directed science instruction, on the other hand, is associated with better science performance in almost all countries. This positive association is equally strong across all science sub-domains and proficiency levels, and does not vary with student and school characteristics (e.g. disciplinary climate, student composition, resources, etc.). Based on these findings, we can conclude that teacher-directed practices are likely to deliver good results regardless of environment.

Our findings also show that adapting science lessons to students’ needs is correlated with stronger science performance in the majority of countries, even after accounting for student and school characteristics. This relationship is particularly strong in the Nordic countries, which are known for their comprehensive education systems and their reliance on differentiated learning approaches.

So which strategy would be most effective for science teachers to deploy? Our findings suggest a combination of all three. For example, teachers with strong classroom-management skills and professional knowledge could guide student learning with explicit instruction of basic ideas, then ask them to carry out enquiry-based activities to consolidate their knowledge. At the same time, teachers could also adapt their science lessons to account for differences among students, and help those who have difficulty understand a particular topic.

This conclusion may not be satisfying for those who firmly support one approach over the other. But our findings shed light on the real-world complexity of teaching in various classroom environments – where teachers often have to find the right mix of different practices to achieve the best results for their students.

Science teachers’ satisfaction: Evidence from the PISA 2015 teacher survey

OECD working paper EDU/WKP(2018)4

With Judit Pál

In 2015, for the first time in its history, PISA (the Programme for International Student Assessment) asked teachers to describe the various aspects of their working environment and teaching practices. This paper examines how teacher, student and school characteristics are related to science teachers’ satisfaction in 19 PISA-participating countries and economies. The findings show that the most satisfied science teachers tend to be those who are initially motivated to become teachers. The results also highlight the positive relationship between science teachers’ satisfaction and teacher collaboration, good disciplinary climate in science classes, availability of school resources, and the opportunity to participate in professional-development activities.

Download paper in PDF

http://dx.doi.org/10.1787/1ecdb4e3-en

What makes for a satisfied science teacher?

What makes for a satisfied science teacher?

Teachers play a vital role in the lives of their students. They impart knowledge, provide pastoral care, act as role models and, above all, create an environment that’s conducive to learning. But teaching is fraught with numerous challenges that could lead to dissatisfaction and ultimately to drop-out from the profession. Science teachers are particularly vulnerable to quitting their jobs given the opportunities that exist outside the teaching profession.

So what makes a science teacher satisfied enough that he or she would want to keep teaching, despite the challenges they might face?

Data from PISA’s 2015 teacher questionnaire provide interesting evidence.

Science teachers who reported that pursuing a career in the teaching profession was their goal after finishing secondary school are far more satisfied with their jobs and with the profession as a whole. These teachers represent about 58% of all teachers on average across all countries. The relationship between these long-held ambitions and teacher satisfaction is strong across most countries and economies, and particularly in Beijing-Shanghai-Jiangsu-Guangdong (China), Brazil, the Dominican Republic, Peru and the United Arab Emirates.

But a lack of school educational and physical resources, and behavioural problems among students in school could undermine teachers’ satisfaction. For instance, teachers who perceive that the lack of teaching staff hinders instruction tend to be less satisfied with their profession and with their current job. The difference in satisfaction between the teachers who reported that these shortfalls hinder instruction to a great extent and those who reported little or no impact are the largest in Australia, Brazil, Chile, Germany, Macao (China) and the United Arab Emirates. The findings also show that in 10 out of 18 countries and economies, teachers’ satisfaction with their current job is positively associated with the disciplinary climate in science classes, as perceived by students. The associations are particularly strong in Brazil, the Dominican Republic, Germany, Peru and the United States.

The presence of a collaborative and collegial working environment could boost teacher satisfaction. In fact, teachers who reported frequent collaboration among their colleagues tend to be more satisfied with their job and with the profession as a whole. Collaborative activities are more common in Australia, Beijing-Shanghai-Jiangsu-Guangdong (China), Colombia, the Dominican Republic, Korea, Macao (China), Peru, Portugal and the United Arab Emirates, and less common in Brazil, Chile, the Czech Republic, Germany, Italy and the United States.

PISA 2015 also shows that science teachers who engaged in more than three types of professional-development activities during the preceding 12 months tend to be more satisfied with the teaching profession and with their current job. On average and across all countries, 52% of teachers undertook more than three different types of professional-development activities during the last 12 months. The proportions are particularly large in Beijing-Shanghai-Jiangsu-Guangdong China (82%), Brazil (65%), the Dominican Republic (76%), Peru (65%) and the United Arab Emirates (65%).

Last but not least, some factors usually associated with challenging learning environments, such as the presence of large proportions of immigrant students or of students who do not speak the language of the host country, are not linked to teachers’ dissatisfaction with their job or the profession. This finding is particularly interesting because it shows that teachers do not necessarily mind teaching in schools with more demanding student populations as long as the environment is conducive to learning, the school climate is positive, and adequate resources are available.

To sum up, teacher satisfaction is positively associated with factors known to improve students’ performance, such as collegial and positive school environments. In other words, teachers’ satisfaction is both an aspect and a consequence of the school environment. As such, one has to improve the learning experience for all students in order to boost teachers’ professional satisfaction.

Links 
The Programme for International Student Assessment (PISA)
PISA in Focus No. 81 – What do science teachers find most satisfying about their work?
Working Paper No. 168 – Science teachers’ satisfaction: Evidence from the PISA 2015 teacher survey

Follow the conversation on Twitter: #OECDPISA

Image source: @Shutterstock